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Abstract

A Kalman �lter for the assimilation of long�lived atmospheric chemical constituents

was developed for two�dimensional transport models on isentropic surfaces over the

globe� Since the Kalman �lter calculates the error covariances of the estimated con�

stituent �eld� there are �ve dimensions to this problem� x�� x�� and time� where x� and

x� are the positions of two points on an isentropic surface� Only computers with large

memory capacity and high 	oating point speed can handle problems of this magnitude�

This article describes an implementation of the Kalman �lter for distributed�memory�

message�passing parallel computers� To evolve the forecast error covariance matrix� an

Operator Decomposition and a Covariance Decomposition were studied� The latter was

found to be scalable and has the general property� of considerable practical advantage�

that the dynamical model does not need to be parallelized� Tests of the Kalman �l�

ter code examined variance transport and observability properties� This code is being

used currently to assimilate constituent data retrieved by limb sounders on the Upper

Atmosphere Research Satellite�
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� Introduction

This article introduces one of the current research e�orts at the Data Assimilation O�ce

�DAO� of the NASA�Goddard Space Flight Center to use the Kalman �lter �e�g�� Ghil et al�

	�
	� for atmospheric data assimilation� At present� a full implementation of the Kalman

�lter in a four�dimensional data assimilation ��DDA� context is impossible� Considerable

research needs to be undertaken before any implementation could be used operationally�

Many open questions need to be answered surrounding computational approximations �e�g��

Todling and Cohn 	���� Cohn and Todling 	��
�� model and observation error covariance

descriptions �e�g�� Dee 	����� nonlinearity �e�g�� M�enard 	����� and basic probabilistic as�

sumptions �e�g�� Cohn 	��� and references therein�� Therefore we have chosen a model

problem in two space dimensions� for which real observational data exist and for which the

Kalman �lter can be implemented fully� to establish a benchmark system to begin addressing

some of these issues in a real�data environment�

Our model problem focuses on trace chemical constituent assimilation� This is also

a problem of considerable interest in the Earth Science community �e�g�� Daley 	���� Ri�

ish�jgaard 	��
�� It is well known that in the upper troposphere and stratosphere� a number

of trace chemical constituents can be modeled for relatively long timescales� typically weeks

to months� using mass continuity dynamics� In isentropic vertical coordinates the transport

behaves two�dimensionally� Therefore we have implemented a Kalman �lter in spherical

geometry on an arbitrary isentropic surface �cf� Cohn and Parrish 	��	�� In this case the

state dimension is 	��� 	�� at a resolution of �o latitude � ���o longitude� which requires

special computational strategies for a full Kalman �lter implementation� Observations are

available from the Upper Atmosphere Research Satellite �UARS� �Reber 	���� Rood and

Geller 	���� launched in September 	��	� This NASA satellite carries a number of instru�

ments that obtain retrievals of trace gases in the upper troposphere and the stratosphere

using limb�sounding techniques� Thus we can perform meaningful data�assimilation exper�

iments that operate at the �oating point speed and memory limit of present�generation

distributed�memory parallel computers� This article deals with e�cient strategies for par�

allel implementation of the Kalman �lter� and tests their implementation by assessing basic

scienti�c properties of variance transport and observability�

Since this article concentrates on computational aspects of full Kalman �lter implemen�

tation� synthetic data are used in the experiments reported here� Near�future work will

involve assimilating actual UARS data� with the transport model driven by wind analyses

from the global atmospheric data assimilation system �PSAS� da Silva et al� 	���� currently

under development at the DAO� With the benchmark constituent data assimilation system

	



in place� we expect to be able to address a number of the open questions in Kalman �lter�

ing� and to produce research�quality datasets of assimilated atmospheric constituents at an

acceptable cost�

This paper is divided into six sections� Section � presents the mathematical formulation

of the Kalman �lter for constituent data assimilation� Section � describes the implementa�

tion on distributed�memory parallel computers using message�passing Fortran �� software�

We develop two methods for implementing the forecast error covariance dynamics and in�

dicate our reasons for choosing one �Covariance Decomposition� over the other �Operator

Decomposition�� The Covariance Decomposition is e�cient in the sense of minimizing wall�

clock time� and scalable in the sense that speed up is attained when more processors are

used on a given problem �especially at high resolution�� It also has the important advantage

that the model dynamics does not need to be parallelized so long as the model �ts in the

memory of a single processor of the parallel computer � this is a general property� We fur�

ther describe a parallel implementation of the Kalman �lter analysis equations� Section �

emphasizes the e�ciency of the parallel implementation by showing detailed timings on the

�	��processor Intel Paragon computer at the California Institute of Technology� In section

� we concentrate on the scienti�c validation of the algorithm itself by testing two basic

properties of our Kalman �lter algorithm� The �rst test veri�es the predicted transport

by solid�body rotation winds of an initial cosine�hill variance structure� The second test

shows how the total variance is reduced to zero to machine precision in �nite time for an

observing network that guarantees complete observability� In section 
 we summarize our

conclusions�

� Description of the Kalman Filter for Constituent Assimi�

lation

The transport of atmospheric chemical constituents obeys the mass conservation law�

�

�t
��r � v� � S� �	�

where � denotes the density of the constituent �i�e�� its mass per unit volume�� v is the

three�dimensional wind vector� and S represents the mass source�sink terms due to chemical

reactions or photodissociation�

In this work we consider the transport of long�lived constituents �i�e�� chemical trac�

ers�� Lower and middle stratospheric nitrous oxide �N�O�� methane �CH��� CFC�s� water

vapor� aerosols� and lower stratospheric ozone �O��� can all be characterized as long�lived

constituents for time scales of weeks or more �Brasseur and Solomon 	�
�� Andrews et al�

	�
��� Using potential temperature � as the vertical coordinate� and neglecting diabatic

�



e�ects� chemistry� and explicit sub�grid scale parameterization of mass �ux� the transport

of long�lived constituents becomes two�dimensional� and can be written as

�

�t
��r� � v�� � �� ���

Here v� denotes the two�dimensional wind vector on the isentropic surface �� � constant��

and r� denotes the two�dimensional gradient operator on the isentropic surface� The mass

conservation law can also be written in terms of mixing ratio instead of density as the

state variable� in which case the appropriate transport model is the advection equation �cf�

Andrews et al� 	�
�� Appendix 	�A��

In studies of tracer transport� winds used to drive the transport model �	� or ��� are

usually given by a general circulation model �Williamson and Rasch 	�
�� or from wind

analyses interpolated in time �Rood et al� 	��	�� However� for this study we use analytically

prescribed wind �elds to assess basic properties of the Kalman �lter algorithm as well as

the timing and scaling performance of the parallel implementation�

In matrix�vector notation� a discrete version of Eq� ��� can be written as

wt
k � Mk��w

t
k��� ���

where wt
k is an n�vector of constituent densities on a grid covering the isentropic surface�

and the n � n matrix Mk�� denotes the action of the discrete dynamics from time tk��

to time tk � The continuum transport equation ��� is linear and it is assumed that the

discrete transport equation ��� is also linear� the dynamics matrix Mk does not depend on

wt
k� although it does depend on the wind �eld� which may vary with time� Two di�erent

discretizations were actually implemented� as discussed in section ���� For both cases� the

discrete dynamics are assumed to be perfect in this initial study� no model error term

appears in Eq� ���� Thus wt
k denotes the true state at time tk � which is to be estimated on

the basis of observations available up to and including time tk �

Observations wo
k available at time tk are assumed to have the form

wo
k � Hkw

t
k � �ok� ���

where wo
k is a p�vector of observations valid at time tk �p generally varies with time� p � pk��

Hk is the p � n observation matrix used to interpolate the state to the positions of the

observations� and �ok is a random vector representing the observational error� assumed to

be white in time� Gaussian�distributed with zero mean and known covariance Rk � �

�ok��
o
k�

T �� and uncorrelated with the initial state wt
�
� Hk is assumed to be independent of

the state wt
k� and is implemented as a sparse operator performing bilinear interpolation from

the model grid to the observation locations� The error of representativeness is neglected

�



here� For further discussion of model error and representativeness error� see Cohn �	����

and references therein�

Under the stated assumptions� the standard Kalman �lter algorithm described below

gives the evolution of the conditional means

wf
k �� wt

kjw
o
�
� wo

�
� ���� wo

k�� �� ���

wa
k �� wt

kjw
o
�
� wo

�
� ���� wo

k �� �
�

and the corresponding conditional covariances

P f
k �� �fk��

f
k�

T
jwo

�
� wo

�
� ���� wo

k�� �� ���

P a
k �� �ak��

a
k�

T jwo
�
� wo

�
� ���� wo

k � � �
�

Here the n�vectors wf
k and wa

k are termed the forecast and analysis� respectively� �fk �

wt
k � wf

k
and �ak � wt

k � wa
k are the forecast and analysis errors� and P f

k
and P a

k are the

�n� n� forecast and analysis error covariance matrices�

The Kalman �lter algorithm �see Jazwinski 	���� Gelb 	���� or Cohn 	��� for deriva�

tions� consists of two steps�

The forecast step

wf
k � Mk��w

a
k�� ���

P
f

k � Mk��P
a
k��Mk��

T � Mk���Mk��P
a
k���

T �	��

The analysis step

wa
k � wf

k �Kk�w
o
k �Hkw

f
k� �		�

Kk � P f
k H

T
k �HkP

f
k H

T
k �Rk�

��
�	��

P a
k � �I �KkHk�P

f
k �I �KkHk�

T �KkRkK
T
k � �	��

The �unknown� initial true state wt
�
is assumed to be Gaussian�distributed� with known

mean wa
�
and covariance matrix P a

�
� In the covariance evolution equation �	��� the second

equality is used because we implement the dynamics matrix Mk as an operator�

It should be noted that except for roundo� errors in the computation of Eq� �	��� the

analysis error covariance matrix is symmetric and positive semide�nite for any choice of

gain matrix Kk� When the optimal Kalman gain �	�� is used� the analysis error covariance

equation simpli�es to

P a
k � �I �KkHk�P

f
k � �	��

the optimal form of the analysis error covariance equation� While the optimal form involves

less computation than the so�called Joseph form �	�� with Kk given by Eq� �	��� P a
k com�

puted using the Joseph form is less susceptible to roundo� errors in the evaluation of Kk

�Bucy and Joseph 	�

� pp� 	���	�
� Gelb 	�����

�



� Implementation Strategies for Distributed�Memory Paral�

lel Computers

The computation involved in the Kalman �lter� especially in Eqs� �	��� �	��� or �	��� is

�oating point count� and memory�intensive� To implement the Kalman �lter we use recent

advances in the use of distributed�memory parallel computers� Distribution strategies� their

relative e�ciencies� and details of the corresponding algorithms are discussed in this section�

�rst for the forecast step and then for the analysis step�

The style of programming we have adopted is Single Program with Multiple Data

�SPMD�� This means that the same compiled program is run on all processors �SP�� but

each processor is responsible for di�erent parts of the distributed memory �MD�� Our code

runs portably on serial machines� such as a single processor of a Cray C�� if it �ts into mem�

ory� or on multi�processor message�passing distributed�memory computers� the distinction

is made by setting the number of processors �a Fortran parameter� to be Np � 	� or Np � 	

respectively�

Our implementation to date has been on Intel parallel computers� speci�cally on the

Paragon computer at the California Institute of Technology �Caltech�� which has �	� pro�

cessors and about �� megabytes of usable memory per processor� We also used the Touch�

stone Delta at Caltech� an older machine with �	� processors and 	��� megabytes of usable

memory per processor� Typical processor speeds on both of these machines range from �

to �� million �oating point operations per second �mega�op�s� per processor for realistic

applications� thus reaching 	 to 	� giga�op�s all told� For this paper we used the NX com�

munications library� we used a modular programming approach so that the more standard

Message Passing Interface �MPI� communications library can also be used�

��� Implementation of the covariance forecast� M�MP �T

The computation of the covariance forecast� Eq� �	��� represents one of the most compu�

tationally demanding parts of the Kalman �lter algorithm� The dynamics matrix M is a

sparse operator� occupying O�n� words of memory� the components of M are generated

from the wind variables�u� v� that are speci�ed on a latitude�longitude grid� However� P is

a full matrix with n� non�zero elements� which is a large memory burden for the computer�

For example� at �o �latitude� � ���o �longitude� resolution n � 	��� 	��� and this matrix

represents about 	

 megawords� or 
�� megabytes for a single�precision �� bytes per word�

implementation� Thus the computation of M�MP �T involves not only �oating point cost of

about hn� per timestep� where h depends on the �nite di�erence template for M �typically

�



h � ���� but also the memory cost of storage� The compiled code for the entire Kalman

�lter based on �o � ���o resolution �ts easily in the memory of the Intel Paragon� but not

on the Cray C�� at GSFC�

It follows that it is important to distribute e�ectively the large matrix P over the available

processors� This should be done with minimal redundancy in order to conserve memory�

and as uniformly as possible in order to balance the memory and computational load over

the processors� We have considered two such strategies for this domain decomposition�

Operator Decomposition� and Covariance Decomposition�

The Operator Decomposition follows naturally from the standard domain decomposition

of a �nite�di�erence model where all state�like vectors �w and columns of P � are individually

partitioned and distributed among the processors� This can be used because the operation

MP can be regarded as repeated actions of the model operator on state�like columns of P �

The details of the resulting algorithm� described in the next paragraphs� show that the op�

erationM�MP �T can be performed without the need for a global transpose of data amongst

the processors� The Covariance Decomposition avoids the need to domain decompose the

model by acting M on whole columns of P � i�e�� P is domain decomposed by distributing

whole columns of P among the processors� This is of great practical importance since any

model can be used without having to develop a specialized model domain decomposition�

This is a general property for parallel Kalman �lters on large state spaces� The resulting

algorithm for M�MP �T is forced to use a global transpose of the large matrix MP � The

timings presented in the next section show that this is not deleterious to performance�

����� Operator Decomposition

We adopt the Fortran notation representing the state w on a latitude�longitude grid with

indices w�	�Nx� ��Ny�� the memory is aligned contiguously along rows starting at w�	� ��

and ending at w�Nx�Ny��Nx being the number of grid points on each circle of latitude and

Ny � 	 the number on each meridian� The square matrix P �i	� j	� i�� j�� then has columns

�not to be confused with the columns or rows of the state�like variables on the latitude�

longitude grid� that extend from P �	� �� i�� j�� to P �Nx�Ny� i�� j��� where the Fortran

indices �i�� j�� specify a particular column of P � The operation MP can be represented

as �MP��MP�� ����MPi� ����MPn� where Pi is the ith column of P � These Pi�s are state�like

quantities with the same structure as w�

The operator decomposition is based on a decomposition of the domain of the transport

operator M � For the state forecast� Eq� ���� this is a classical domain�decomposition algo�

rithm �Foster 	����� For the covariance forecast� the algorithm is illustrated in Figure 	�a��






The dashed lines in the box representing P delineate the elements or slice of P that be�

long to a particular processor� When the grid�point transport model operates on this slice�

only data pertaining to a fraction of the physical domain are needed� In this method� the

domain of the transport operator is decomposed and the columns of the covariance matrix

are decomposed accordingly� For a speci�c discretization of M � certain boundary values of

a slice of P in each domain need to be stored redundantly in guard cells� If the number of

grid points in each domain is large compared to the number in the boundary regions� this

is a small degree of redundancy� However� the redundant data have to be passed between

appropriate processors when M operates on a column Pi �or w�� This is called message

passing and it involves an interprocessor communication time cost that must be added to

the on�processor �oating point operation time cost when evaluating the wall�clock time� or

more importantly� the feasibility of performing the algorithm in an acceptable amount of

time� An advantage of this Operator Decomposition approach is that the transpose �MP �T

involves no communications� As illustrated in Figure 	�a� the slice of MP in a particular

processor is actually stored as a collection of column fragments� These data are rearranged

in memory to form contiguous rows of MP � This is equivalent to forming a domain de�

composition of �MP �T where whole columns are stored on each processor� When the entire

two�dimensional wind �eld is in each processor� which is not a strain on memory� M�MP �T

can be evaluated� without message passing� by the operator M acting on the columns of

�MP �T � i�e�� evaluate �M�MP �T
�
�M�MP �T

�
� ����M�MP �Ti � ����M�MP �Tn �� Finally� because

P is symmetric the columns of M�MP �T can be internally transposed so that the resulting

matrix is domain decomposed� suitable for continuing the timestep cycle�

����� Covariance Decomposition

In this case� the error covariance matrix P is partitioned along rows so that whole columns

are stored contiguously on each processor� The transport model operates on whole columns

of P as illustrated in Figure 	�b�� It is not trivial to partition a size�n� matrix P along

rows onto Np processors in such a way that the number of columns of P �and hence also the

�oating point cost of MP � is approximately the same on all processors� This is generally

referred to as the problem of load balancing� On a message�passing computer with Np �� 	

it is acceptable for a relatively few processors to �nish their jobs earlier than the rest� these

processors just sit and wait� However� it is a problem if a relatively few processors �nish

much later than the rest� Lyster et al� �	���� describe the load balancing procedure that

was applied to the Covariance Decomposition approach� the algorithm is summarized in

Appendix A� The matrix MP is calculated with no interprocessor communications as long

�



as all the wind components are stored in each processor� The result MP is decomposed

naturally in the same manner as P was as indicated in Fig� 	�b��

The transpose �MP �T has to be performed so that whole columns of the result will be

stored contiguously in�processor� in preparation for the calculation ofM�MP �T in the same

manner as MP itself� This necessarily involves communications because blocks ofMP that

belong to a processor must be communicated to the destination processor that will store

�MP �T � This amounts to a global transpose of a size�n� matrix� which is not trivial since

every processor must send and receive sub�blocks of P to every other processor� E�cient

implementation of this global transpose using Intel NX communication library subroutines

is also described in Lyster et al� �	����� After the global transpose� the complete calculation

M�MP �T can be computed simply� without communications� in exactly the same way as

the �nal step of the Operator Decomposition approach described above�

In both approaches the whole �symmetric� matrix P is stored� This is not wasteful of

memory since both approaches calculate M�MP �T through intermediate calculation of the

non�symmetric matrix �MP �T in the same memory as that allocated to P � Storing the

whole of P also simpli�es both algorithms considerably�

��� Comparison of the Operator and Covariance Decompositions

Comparing multiple approaches to an application is generally based on the nature of the

software implementation �complexity� portability� ease of debugging and maintenance� etc���

and the relative e�ciencies in terms of metrics such as the achievable number of �oating

point operations per second or the time to solution�

The relative e�ciencies of the two decomposition approaches are determined by how

much of the work can be distributed e�ectively �parallelized� and by how much the parallel

cost of interprocessor communications and associated memory bu�ering detracts from the

on�processor �oating point operation performance� The on�processor �oating point count is

approximately the same in both cases� Also� not only is it important that the parallel cost

be small� but that it remain relatively small as the number of processors Np is increased�

This is commonly referred to as scaling� In our work� it is important that an algorithm

scales well for large numbers of processors �say Np � ���� for typical resolutions of �o � �o

and �o � ���o�

We used two di�erent transport schemes for the operator M � the monotonic second�

order upwind van Leer scheme �Rood 	�
�� Allen et al� 	��	� and a �ux�conserving semi�

Lagrangian piecewise parabolic method �Lin and Rood 	��
�� We evaluated the Operator

Decomposition algorithm only for the van Leer transport scheme� The conclusions that we






drew from this and the well�known di�culty of domain decomposition for semi�Lagrangian

transport �e�g�� Barros et al� 	���� led us to focus on the Covariance Decomposition�

First� we can estimate the central processing unit �CPU� time it takes to perform

M�MP �T excluding the parallel cost� At �o � �o resolution for the van Leer scheme on

a single processor of the Intel Delta� the operation Mw takes ����� seconds per timestep�

This time does not di�er much from the time for the algorithm of Lin and Rood �	��
��

At this resolution n � �� � �
 � ��	�� so the minimum time to evaluate M�MP �T is

��n	Np� � ����� � �	�	Np seconds per timestep� A typical simulation uses a 	��minute

timestep on ��
 processors� so this amounts to 	�� seconds of compute�time per day ��


timesteps�� This establishes that an e�cient parallel implementation of the dynamics should

give rise to an algorithm that runs to completion in an acceptable amount of wall�clock time�

A run at �o � ���o resolution with the same timestep �made possible because 	� minutes

was conservative for the �o � �o run� should take about �� � 	
 times as long� since P is

then four times as large in each dimension�

The scaling of the Operator Decomposition was assessed by developing a domain�decomposed

version of the van Leer scheme for Eq� ���� This involved dividing the latitude�longitude

grid uniformly into Npx regions in the E�W direction and Npy regions in the N�S direction

�i�e�� Np � Npx�Npy�� It should be noted that this is not an optimal decomposition for this

scheme because the standard upwind algorithm on a latitude�longitude grid usually requires

subcycling of the timestep at high latitudes in order to keep the Courant number less than

one� Hence this uniform domain decomposition is load�imbalanced because processors that

solve for high�latitude domains have a higher CPU burden� To focus attention on scalability

we do not directly address this load imbalance problem�

The results given here are for the case of a small timestep everywhere on the grid such

that the Courant number is less than one� and therefore there is no load imbalance� The

metric we use is the speedup S� which is the time taken to perform Mw �or MPi� on one

processor divided by the time on Np processors� If there is no communication cost and a

�xed processor speed we would expect an ideal scaling Sideal � Np� When only parallel

communications degrade the scaling performance we expect a speedup of

Sc � Np	�	 � 
par	
CPU�� �	��

where 
par is the time involved in packing and unpacking the communication bu�ers and

invoking the communication library subroutines� The quantity 
CPU is the processor time

used for �oating point operations� In general� maximum times per processor should be used

for times such as 
par and 
CPU � However� here and for the remainder of this paper� where

load balance is never a problem� we will use average times per processor�

�



Figure � shows a plot of the measured speedup S as well as the ideal speedup for a �o��o

resolution problem performed on up to Np � 	
 Intel Delta processors� The measured

speedup curve starts to tail o� at 	
 processors� This is undesirable because it indicates

that adding more processors will not result in a proportionate decrease in the wall�clock

time� The quantity Sc is also plotted �for reference� for Np � 	
� 
par	
CPU � �����

The di�erence between Sc and the measured speedup S is due primarily to variation in

the on�processor �oating point speed as the domains become smaller with increasing Np�

Experiments at �o � ���o resolution �not shown� revealed that the speedup curve �attens

out above Np � ���

These experiments indicate that a straightforward application of Operator Decomposi�

tion� based on a domain�decomposed transport algorithm� would not be e�ective for the

�o � �o or �o � ���o resolutions that are of interest in our work� This is mainly because

messages smaller than about one kilobyte �as here� incur a latency �or startup cost� of about

	�� �s� One way to avoid this is to concatenate guard�cell data at the beginning of each

timestep� and then send the resulting data bu�er as a single message� This would add to

the complexity of the software� A more serious drawback to the Operator Decomposition

is the well�known di�culty of parallelizing the semi�Lagrangian algorithm �e�g�� Barros et

al� 	�����

An advantage for the Covariance Decomposition is that it is unnecessary to parallelize

the transport operator� the choice of transport scheme can be based on scienti�c merit alone

because M is simply implemented as serial code on each processor� The potential disadvan�

tage is that a parallel matrix transpose �MP �T needs to be implemented� The transpose

involves the transfer of almost all the memory of MP �except for diagonal blocks� between

processors� This involves more communications �in terms of the total number of bytes�

than the Operator Decomposition� where only nearest�neighbor processors communicate

via guard cells� However� through the communication of large bu�ers in the matrix trans�

pose� the e�ect of message latency is reduced� For example� the time for a global transpose

for �o� �o resolution with �	� processors on the Intel Delta is ��	
 seconds� This compares

favorably with the prior estimate of the CPU time to calculate M�MP �T of about 	 second�

leading to an acceptable estimated speedup of Sc � �	�	�	�����	
�� ����Detailed timings

for the global transpose �including bu�ering� for all numbers of processors up to �	� are

given in Lyster et al� �	����� In section �� scaling and timing results for the entire Kalman

�lter using the Covariance Decomposition are presented�

The Covariance Decomposition approach can be applied to any set of dynamical equa�

tions that can be represented in the form of Eq� ���� The only restriction is that the

implementation of the operatorM should �t on a single processor� For nonlinear dynamics�
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the tangent linear model operator would be used to evolve the error covariance �M�enard et

al� 	���� Daley 	�����

Our sequential method for evaluating M�MP �T allocates storage for one matrix of size

n� and message bu�ers of size n�� both of these large memory objects need to be distributed

among all processors� In the next section we show that� depending on the number of ob�

servations p that are assimilated in a timestep� the memory requirements and number of

�oating point operations involved in the analysis error covariance computation can compete

with �and even exceed� that required for evaluating M�MP �T �

��� Implementation of the analysis step

The analysis equations are �		�� �	��� �	��� or �	��� The gain K is stored as an n � p

matrix� H is a p � n sparse operator that interpolates bilinearly from analysis gridpoints

to observation locations� In practice� only the four interpolation weights per row of H are

actually stored� P fHT is n�p� while HP fHT�R is p�p� The Kalman �lter is a sequential

algorithm� at each timestep p observations are assimilated� Since typically p� n� all of the

above matrices are small �as is the state w� compared with size�n� matrices� P f and P a�

The present code stores all small matrices �n � p and p � p� identically on all processors�

This considerably simpli�es the software and debugging� The only problem occurs when p

is su�ciently large that the storage of the n� p matrices competes with the storage of size�

n�	Np components of P on each processor� This occurs when the number of observations in

a timestep is p � n	Np� For example� at �o� �o resolution on Np � �	� processors� storage

of the small matrices competes with the storage of P when p � 
 observations per timestep�

The Cryogenic Limb Array Etalon Spectrometer �CLAES� instrument on board the UARS

satellite retrieves a number of trace constituents in the stratosphere using a limb sounding

technique� We are assimilating retrievals from this instrument� and others on board UARS�

to generate gridded datasets� In one timestep of our Kalman �lter �	� minutes� CLAES

produces about 	� observations when interpolated onto an isentropic surface� In this case

small�matrix storage dominates that of P � For �o � ���o resolution �Nx � 	��� Ny � ����

pmax � 	�� and Np � �	�� the compiled code� including the analysis code� on the Intel

Delta requires 	� megabytes per processor� just below the user limit of 	��
 megabytes� In

this case� storage of P dominates that of the small matrices� since n	Np � �
� The Intel

Paragon has twice as much user memory� so runs with Np � ��
 are possible at this spatial

resolution�

The following summarizes the �oating point and communication costs of the analysis

equations�

		



����� Evaluate the Kalman gain K

The algorithm evaluates contractions where possible so that large size�n� matrices are not

generated unnecessarily� The �rst such contraction is P fHT � For bilinear interpolation� the

p� n matrix H has only four non�zero elements along each row� Each column of the n� p

matrix P fHT is therefore a linear combination of four columns of P f � Thus the evaluation

of P fHT takes O�np� operations shared over all processors� Since P f is distributed� and

we require K to be reproduced identically on all processors� we �rst calculate partial sums

of P fHT on each processor and then perform a global sum over all processors to obtain

P fHT � This is a standard operation on SPMD computers� hence these global�sum routines

are usually provided as optimized library calls �usually involving tree�code algorithms� cf�

Foster 	����� The parallel cost of this is O�np log�Np� operations shared over all processors�

while the parallel communication cost is optimized according to the architecture of the

machine�

The matrix HP fHT is evaluated as H�P fHT �� the matrix P fHT already exists on

all processors� This takes O�p�� operations and the global combine takes O�p� log�Np�

operations� both shared over all processors� with some communication overhead in the

global sum� The observation errors are taken to be uncorrelated� hence R is diagonal� the

elements being the measurement error variances� The solution of Eq� �	�� to obtain K

uses an eigenvalue decomposition to evaluate the inverse of symmetric matrices �Press et al�

	�
��� This approach allows for the deselection of small eigenvalues in the construction of the

inverse of the matrix HP fHT �R� which is poorly conditioned when the observation error

variances are small� especially for perfect observations as in the observability test �see section

����� This takes O�p�� �oating point operations per processor to obtain �HP fHT � R�
��

�

When our algorithm is used with UARS datasets� ill�conditioned matrices are not expected

to arise� in which case we will use a more e�cient Cholesky decomposition to solve �	���

Finally K is evaluated on each processor as P fHT �HP fHT � R�
��

which takes O�np��

operations per processor�

The �oating point cost of evaluating K� O�np�� operations on each processor� increases

relative to that of M�MP �T � which is O�hn�	Np� operations per processor �refer to section

��	�� as p or Np become larger� There is also a memory burden in storing K and P fHT on

all processors� which becomes comparable to the storage of P when p � n	Np�
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����� Evaluate P a

Consider �rst the optimal form Eq� �	��� P a � �I � KH�P f � This is evaluated as

P f �K�HP f�� The second term uses K and HP f � �P fHT �
T
� both of which are stored

identically on all processors� The expansion K�HP f� is performed in parallel by evaluating

only those terms that contribute to each processor�s domain for the storage of P a� This

takes O�n�p	Np� operations per processor� This increases relative to the cost of calculating

M�MP �T as p becomes larger�

The Joseph form Eq� �	�� is evaluated as�

P a � �I �KH��P f �K�HP f��
T
�KRKT �

Once again this is generated from HP f � K� and R which are all stored identically on all

processors� This operation takes O�n�p	Np� operations per processor� however there is a

parallel cost involved in the global transpose of the size�n� matrix� Since P f is overwritten

by P a no additional memory is required� cf�� section ��	���

����� Evaluate wa

This is carried out identically on all processors� The innovation wo�Hwf is a p�vector that

is evaluated and saved for collection of innovation statistics� The Kalman gain is applied

to this vector and the analyzed state wa evaluated� Eq� �		�� The time to evaluate wa is

dominated by the multiplication by the Kalman gain� which takes O�np� operations per

processor�

The matrix inversion and the evaluation of wa are not parallelized� For these two compu�

tations� all processors perform exactly the same calculations and K�HP f � and wa are stored

identically on each processor� The larger calculations in the analysis step are performed as

parallel processes�

	 Timings for the Parallel Kalman Filter

The previous section makes it clear that the Covariance Decomposition strategy is preferred

for the covariance forecast dynamics� Eq� �	��� We discussed a strategy for the analysis

step that involves some global communications to evaluate P fHT � evaluating K and wa

identically on each processor� and parallelizing the equations for P a� Eqs� �	�� or �	���

In this section all timings were obtained for runs on the Intel Paragon at Caltech� The

interprocessor communication bandwidth of this machine is about � times faster� and the

on�processor speed ��op�s� is about 	�� times faster than that of the Delta� We used single

precision arithmetic with compiler optimization options O� and noieee�
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For medium resolution ��o��o� using the Joseph form� Eq� �	��� Figure � shows the ideal

speedup �Sideal � Np�� as well as the measured speedup for the forecast step� the analysis

step� and the full Kalman �lter� for Np � �	
� ��� 
�� 	�
� ��
� �	��� For experiments

involving the assimilation of CLAES data� the timestep is 	� minutes and the average

number of observations �p� per timestep is 	�� The results in this section apply to this case�

Note that the minimum number of processors on which this problem was run is 	
� so these

actual speedups are measured with respect to the times on 	
 processors� This speedup

is slightly more optimistic than the usual value measured with respect to time on a single

processor� However� what is important is the change in speedup as more processors are

added to a problem� because this indicates how well the incremental processors are utilized�

Figure � indicates that the speedup for the analysis step is less linear �scalable� than for

the forecast step� thus degrading scalability of the full Kalman �lter� Both steps involve

substantial interprocessor communication� and the improvement in on�processor speeds with

optimization emphasizes the relative cost of the interprocessor communications �the forecast

step is less scalable than was estimated in section ����� That is� although the code runs

faster with more processors� the scaling is poorer� this is a common result of on�processor

optimization� The speedup for the analysis step tails o� more quickly than that of the

forecast because only part of this step is fully parallelized� namely� the evaluation of P a�

The total speedup curve in Figure � begins to �atten above ��
 processors� so that using

more than ��
 processors at medium resolution for the Joseph form with optimized code

does not reduce the wall�clock time signi�cantly� Figure � shows the corresponding speedup

curves when the optimal form� Eq� �	��� is used� Here the time to evaluate P a is reduced

relative to that of K and P fHT � Since the evaluation of P a is fully parallel� the analysis

step speedup curve now falls o� more rapidly than in Figure �� In fact� the analysis step

shows little speedup above 	�
 processors�

The actual times in seconds per timestep for the analysis using the Joseph form� the

forecast step� and the full Kalman �lter are shown in Figure � for medium resolution and

p � 	� observations per timestep� The dominant cost of the analysis for large numbers

of processors is clear� A typical 	��day run takes �
� timesteps� This evaluates to an

acceptable �� minutes of wall�clock time for the full Kalman �lter using ��
 processors�

The corresponding results for the optimal form are shown in Figure 
� Since the optimal

form is simpler �with fewer �oating point operations and without the need for the global

transpose�� the actual times for the analysis are relatively small� This is why the speedup

�scaling� for the full Kalman �lter is a little better for the optimal form than for the Joseph

form �compare Figs� � and ��� Only for large numbers of processors Np � ��
 does the time

for the analysis step exceed that of the forecast step� The full Kalman �lter step takes less
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time for the optimal form than the Joseph form� for all numbers of processors� A 	��day

run for the optimal form takes about �� minutes of wall�clock time for the full Kalman �lter

using ��
 processors�

Due to the limitations of main memory� high�resolution runs ��o � ���o� can only be

performed on ��
 and �	� processors of the Intel Paragon� Therefore complete speedup

curves cannot be plotted� however� comparisons with medium�resolution runs can be made�

For a 	��day run with �
� timesteps on �	� processors� the total time for the full Kalman

�lter at high resolution is ��
 hours for the Joseph form and ��� hours for the optimal form�

The ratio of the total time for ��
 processors to that of �	� processors is 	��� for the Joseph

form and 	��� for the optimal form� This scaling is considerably better than for medium

resolution� due to the improved scaling of the global transpose for larger sized matrices and

the reduced relative cost of calculating the matrices K and P fHT � at least one of whose

dimension is �xed �p��

Actual �op�s rates were calculated using the hardware performance monitor �hpm� on

the Goddard Cray C�
 to measure the number of �oating point operations� The �op�s rates

were calculated by dividing the hpm numbers by the actual times �Figures � and 
� i�e��

for p � 	�� on the Intel Paragon� Figure � shows the giga�op�s rates for the full Kalman

�lter �optimal form� for both medium ��o� �o� and high ��o� ���o� resolutions� We obtain

a peak performance of about 	�� giga�op�s� This is typical for the i

� RISC�based pro�

cessors� where local memory�to�memory data transfers reduce the actual throughput below

the rated peak �especially for a semi�Lagrangian transport algorithm�� The giga�op�s rates

for the Joseph form �not shown� are almost the same as for the optimal form� peaking at

	�� giga�op�s� the slight reduction arises from the parallel cost of the extra global transpose

operation� We note that there are di�erent interpretations of the term �op�s in the evalu�

ation of parallel code performance� We have used the conservative approach of considering

only the number of �oating point operations for the serial version of the code on the Cray

C�
� In deriving the numbers for Figure � we do not factor in the extra parallel �oating

point burden associated with� for example� the global sum in calculating P fHT �

Both forms of the Kalman �lter �Joseph and optimal� scale well up to ��
 processors at

�o � �o resolution� Scaling is satisfactory up to �	� processors at �o � ���o resolution� The

algorithms for evaluating P fHT and K are the dominant cause of diminishing speedup�

Table 	 shows that the percentages of times taken by P fHT and K increase signi�cantly

from Np � 	
 to �	� processors� In the case of P fHT recall that global sum operations

are used to combine partial sums over processors� For p � 	� and Np � p most processors

will make no contribution to the sum� yet the global sum is over all processors� This gives

rise to the poor scaling for P fHT � An optimized algorithm that replaced the global sums
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would be considerably more complex� The evaluation of K is not parallelized� the inverse of

�HP fHT�R�� a p�p matrix� is performed identically on all processors and gives rise to the

poor scaling in Table 	� No UARS instrument provides enough observations per timestep

to make satisfactory use of a parallel inverse� such as from the Scalapack software library�

We have not found other than bitwise identical results for the same run performed on

di�erent numbers of processors� However� because of the use of the global sums that may

evaluate partial sums in a di�erent order �depending onNp and the location of observations��

bitwise identical results are not guaranteed by our algorithm�

Table 	� Times for the P fHT and K steps as a percentage of the total analysis times for

�o� �o resolution� and 	� observations per timestep� These numbers are evaluated for both

	
 and �	� processors� The remaining percentages are dominated by the cost of evaluating

P a� which is highly parallelized�

Number of Processors 	
 �	�

Percentage P fHT 	�� ���

Percentage K ��� 	��


 Numerical Tests

Here we present the results of two validation tests of the Kalman �lter code� using synthetic

winds and observations� These tests are basic for the Kalman �lter algorithm� further work

will use actual wind datasets and UARS observations� We used the transport scheme of

Lin and Rood �	��
�� which is less di�usive than the van Leer scheme� The algorithm

was rendered linear with respect to the constituent density by removal of the monotonicity

condition�

��� Consistent evolution of the error variance

For non�divergent �ows� in the absence of observations� the variance P �x�x� t� satis�es the

advection equation �Cohn 	����

�

�t
P �x�x� t� � v� � rP �x�x� t� � �� �	
�

where x denotes a point on the isentropic surface � � constant� The non�divergent �ow

considered here is solid�body rotation� In this case Eq� �	
� implies that the variance �eld

simply rotates along with the �ow� and verifying this property constitutes a test of the

implementation of the discrete covariance propagation equation �	��� The axis of rotation

is chosen to pass through the equator �i�e�� �ow is over the poles� so that� in particular� this

provides a test of the variance propagation near the poles�

	




A case is presented with 
o � 	�o resolution �Nx � �
 and Ny � ���� The timestep is

set to 	� minutes� so that one day corresponds to �
 timesteps� The rotation period is 	

day� In this case the maximum Courant number for �ow at the equator is ��	�
 � ���
�

The initial error covariance function is chosen to have a space�limited cosine structure�

P �x��x�� t � �� �

���
��

�����	� cos����	�a���	 � cos����	�a��
for � 	 �� 	 �a and � 	 �� 	 �a

�� for �� � �a or �� � �a

�	��

where �� � ��x��� �� � ��x��� and ��x� is the great�circle angle between x and a

�xed point on the equator where the solid�body speed is a maximum� The initial variance

P �x�x� t � �� is therefore a squared cosine hill centered at the equator� Since P �x��x�� t �

�� given by Eq� �	�� is a product f�x��f�x�� with f continuous� it follows that P �x��x�� t �

�� is a legitimate covariance function �Gaspari and Cohn 	��
�� The initial covariance

matrix P a
�
is obtained by evaluating Eq� �	�� on the grid�

Figure 
�a� shows a contour plot of the initial variance �eld evaluated on the 
o � 	�o

grid� For this case �a � �	�	
�� so the total width of the structure is about 	��o �i�e�� 	�

grid points in longitude and 	� in latitude�� Figure 
�b� shows the discrete variance �eld�

or diagonal of P � after integrating Eq� �	�� for �
 timesteps� Except for a slight north�south

asymmetry� the overall shape is well�preserved after the passage over the poles�

The total variance is de�ned to be the integral

V �
Z
dxP �x�x�� �	
�

where dx is area measured on the surface of the sphere� The integral is evaluated numeri�

cally on the grid� For the present case the initial total variance is ����
� and the �nal total

variance is ������� The discrete dynamics results in a mild di�usion in the transport of

variance over the poles�

��� Observability test

The second test involves both forecast and analysis steps� using synthetic perfect obser�

vations� The total variance V � as de�ned in Eq� �	
� should reduce to zero �to machine

precision� in �nite time if the observability condition is met �Cohn and Dee 	�

�� Solid�

body rotation winds are used again� but now with the axis of rotation is through the poles�

and again at 
o� 	�o resolution� The wind rotation period is again one day� but a timestep

of �� minutes is chosen so that the Courant number is everywhere equal to one �the �ow is

zonal�� Observations are made at all grid points along a �xed meridian at each timestep�

and the observation error covariance matrix R is taken to be zero� Thus the entire �ow is
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observed perfectly in one day� so that the observability condition is met and therefore the

total variance must reduce to zero in one day� The Joseph formula� Eq� �	��� is used to help

ensure numerical stability in this extreme case�

The initial error covariance is taken to be the isotropic second�order autoregressive

�SOAR� model

P �x��x�� t � �� � �	 � ��re	L�sin��	���exp����re	L�sin��	���� �	��

where � � ��x��x�� is the great�circle angle between positions x� and x� on the sphere

�Weber and Talkner 	����� re is the radius of the earth� and L is the correlation length�

Figure � shows the total variance V �in normalized units of r�e� as a function of time for

values of correlation length L � �	� ��� km� ��� km� � km�� The variance is plotted through

points taken every � timesteps� The initial value of V is �� since P �x�x� t � �� � 	� For the

cases L � 	� ��� km and L � ��� km� where the correlation length is comparable to the grid

spacing near the equator and greatly exceeds the grid spacing near the poles� the variance

decreases rapidly at �rst� then decreases linearly� and �nally reaches zero in one day� The

case where the correlation length is � km is well below the grid spacing� corresponding to an

initial covariance structure that is unity on the diagonal of P and small elsewhere� In this

case we expect the total variance to decrease almost linearly because from the �rst timestep

there is negligible correlation between nearby gridpoints� This behavior is demonstrated in

Figure ��

� Summary and Conclusions

We have implemented on distributed�memory parallel computers a Kalman �lter for the

assimilation of atmospheric constituents on isentropic surfaces over the globe� The code runs

at resolutions of 
o�	�o� �o��o� and �o����o on the �	��processor Intel Paragon and Delta

machines at the California Institute of Technology� using Fortran �� with the NX message�

passing library� We have developed a Covariance Decomposition approach as the basis for

the parallel algorithm� This approach distributes the columns of the forecast�analysis error

covariance matrix on di�erent processors� A considerable advantage of this scheme is that it

is not necessary to parallelize the model transport code� only that it �ts onto the memory of

each processor� This approach is also e�cient in terms of the distribution of �oating point

operations and memory� with some parallel cost involved in a global matrix transpose� Ten�

day runs using UARS�CLAES observation datasets can be completed in �� minutes for

the optimal form of the analysis at medium resolution ��o � �o� on ��
 processors of the

Paragon with O� and noieee compiler optimizations ��� minutes for the Joseph form�� The

corresponding high�resolution ��o� ���o� runs take � hours on �	� processors ���
 hours for

	




the Joseph form��

The Kalman �lter forecast step shows some reduction in scaling when the full �	� proces�

sors of the machines are used with compiler optimizations� This reduction is due primarily

to communication overhead involved in the global matrix transpose� The reduction in scal�

ing for the Kalman �lter analysis step is more severe� This reduction is due primarily to the

serial �unparallelized� calculation of the Kalman gain matrix on each processor � sometimes

referred to as an Amdahl�s bottleneck � and� more signi�cantly� to software simpli�cations

that involve the use of global sum library subroutines�

Overall the peak performance obtained for high�resolution runs on �	� processors of

the Paragon is about 	�� giga�op�s� This may be improved by on�processor memory�to�

memory optimization or evaluating the matrix P fHT more directly� using fewer �oating

point operations and communication calls than do the global sums� We expect to port

our code to machines such as the Cray T�E without much e�ort� improving further the

wall�clock time for high�resolution runs�

Basic tests of the parallel Kalman �lter code using synthetic data examined variance

transport and veri�ed observability properties� The code is now being used to assimilate

retrieved constituent data from UARS instruments� using analyzed wind �elds from the

DAO global atmospheric data assimilation system to drive the transport model� Work on

characterizing transport model errors is in progress� Results of these data assimilation stud�

ies will be reported in a future publication�
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� Appendix

Appendix A� A load balanced Covariance Decomposition

The covariance matrix is indexed P �i	� j	� i�� j�� where �i	� j	� and �i�� j�� are Fortran

indices for two positions on a discretized latitude�longitude grid� Following the convention

that is used for the state vector w� the entire matrix is dimensioned P �	 �Nx� � �Ny� 	 �

Nx� ��Ny�� The Covariance Decomposition assigns contiguous columns of P onto di�er�

ent processors in such a way that the totality of all columns on all processors makes up

the entire matrix without redundancy� This amounts to a domain decomposition where a

range of �i�� j�� is assigned to a processor corresponding to a contiguous sequence on a grid

whose Fortran dimension statement has the range �	�Nx� ��Ny�� Each processor allocates

its domain of the matrix as P �	 �Nx� � �Ny� ib � ie� jb � je� where �ib� ie� jb� je� depend on

the processor identi�cation number which� by convention� ranges from � to Np�	� Two

situations arise� For the case Np � Ny�	 at least one processor must have a range of

j� such that je � jb� therefore� ib � 	 and ie � Nx� For the case Np 
 Ny�	 it is

not necessary that any processor overlap multiple values of j�� i�e�� je � jb� In fact� this

condition is necessary to conserve memory when Np is much greater than Ny � 	� because

it is the only way to impose a limited range on i�� i�e�� �ib �ie� must encompass a range

that is less than �	�Nx�� The load imbalance of the resulting decomposition arises from the

uneven numbers of columns of P on di�erent processors� If we de�ne the load imbalance

L as the maximum number of columns on a processor divided by the minimum number�

then it can be shown �Lyster et al� 	���� that the worst case occurs when Np � Ny � 	�

corresponding to Lmax � �Nx � 	�	Nx� For all other cases L is closer to unity� Clearly�

for problems of interest �e�g�� for �o��o resolutionNx � ��� load imbalance is not a problem�

��
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Table 	� Times for the P fHT and K steps as a percentage of the total analysis times for

�o� �o resolution� and 	� observations per timestep� These numbers are evaluated for both

	
 and �	� processors� The remaining percentages are dominated by the cost of evaluating

P a� which is highly parallelized�

Number of Processors 	
 �	�

Percentage P fHT 	�� ���

Percentage K ��� 	��

��



Figure captions

Figure 	 �a�� Schematic for the Operator Decomposition approach for storing large size�n�

matrices and performing M�MP �T �

Figure 	 �b�� Schematic for the Covariance Decomposition approach for storing large size�n�

matrices and performing M�MP �T �

Figure �� Speedup curves for the domain decomposed van Leer transport algorithm imple�
mented on the Intel Delta�

Figure �� The actual speedups for the forecast step� the analysis step� and the full Kalman
�lter on the Intel Paragon for medium resolution ��o� �o� using Covariance Decomposition
and the Joseph form Eq� �	���

Figure �� The actual speedups for the forecast step� the analysis step� and the full Kalman
�lter on the Intel Paragon for medium resolution ��o� �o� using Covariance Decomposition
and the optimal form Eq� �	���

Figure �� The actual time �seconds� per timestep of the forecast step� the analysis step� and
the full Kalman �lter on the Intel Paragon for medium resolution ��o��o� using Covariance
Decomposition and the Joseph form Eq� �	���

Figure 
� The actual time �seconds� per timestep of the forecast step� the analysis step� and
the full Kalman �lter on the Intel Paragon for medium resolution ��o��o� using Covariance
Decomposition and the optimal form Eq� �	���

Figure �� Giga�op�s rates for the full Kalman �lter at medium and high resolution on the
Intel Paragon� These numbers were obtained for the optimal form of the analysis step� Eq�
�	���

Figure 
� For solid body wind propagation over the poles� �a� the initial variance� �b� the
�nal variance after a full rotation period of the winds�

Figure �� The total variance V versus time for a meridional observing network� and an
observation error covariance matrix R � �� The initial error covariance matrix is obtained
from the SOAR covariance function with values of correlation length L � �	� ��� km� ���
km� � km�� The rotation period of the solid body winds about the polar axis is one day�
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Figure 
� For solid body wind propagation over the poles� �a� the initial variance� �b� the
�nal variance after a full rotation period of the winds�
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Figure �� The total variance V versus time for a meridional observing network� and an
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